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Abstract: This frequency synthesizer design aims at achieving low phase and high reliability for 

X-band digital microwave radio applications, using a commercial device and frequency tripling 

techniques. 

 

______________________________________________________________________________ 

Digital microwave radio (DMR) applications require frequency sources with stable outputs and 

low phase noise. One possible solution is an Xband frequency synthesizer designed for use from 

7.7 to 8.2 GHz. It is based on multiplying by three a reliable source operating from 2.56 to 2.74 

GHz with outstanding phase-noise performance to achieve final output signals with -84 dBc/Hz 

phase noise offset 10 kHz from the carrier. The prototype synthesizer features a large tuning 

voltage range and low operating voltage requirements.  

Low phase noise is critical to many wireless systems and radar.
1
 An X-band frequency 

synthesizer, for example, in addition to supporting DMR systems, can be multiplied and mixed 

with local oscillator (LO) signals to cover multiple- frequency applications through 65.6 GHz.
2
 

A variety of synthesizer architectures, such as direct-digital, direct-analog, and indirect-synthesis 

techniques can be used in modern transceivers, although they each have tradeoffs. Direct-analog 

synthesizers feature the lowest phase noise with fast switching speed, using mixers to translate 

the frequencies of surface-acoustic-wave (SAW), coaxial-resonator-oscillator (CRO), 

dielectric-resonator-oscillator (DRO) and other lower-frequency sources. Unfortunately, 

direct-analog synthesizers are complex and expensive to design.
4
 A DDS approach is not suitable 

for wideband frequency generation since it follows Nyquist criteria, with a maximum frequency 

that is less than one-half that of the sampling frequency of a digital-to-analog converter (DAC). 

A DDS provides high frequency resolution and fast switching speed for reasonable cost, but with 

poor spurious performance. 

Phase noise can determine the sensitivity of a receiver in the presence of an adjacent signal. For 

radar systems susceptible to noise offset 10 kHz from the carrier, the phase noise of a VCO is the 

dominant source of noise. One way to reduce phase noise is by reducing the bandwidth, although 

this is not an option for applications requiring wide bandwidths. A divide-by-N module raises the 

phase noise of the initial frequency source since the signal and noise are both multiplied by N. 

For optimum phase noise, a synthesizer’s loop filter bandwidth must be wide enough to reject 

VCO noise. Because of the high phase noise from a divide-by-N module, replacing it with a 
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multiplier module can improve phase noise.5 Although frequency resolution will be 

compromised as a result, fine resolution can be achieved by means of a direct-digital-synthesizer 

(DDS) module. The inherent high spurious levels of the DDS module can be reduced by means 

of bandpass filtering. 

There are many ways to assemble a wideband frequency synthesizer with phase-lock-loop (PLL) 

integrated circuits (ICs), narrowband frequency synthesizers, mixers, and multipliers. Mixing 

and multiplying are the most common methods for designing microwave and millimeter-wave 

frequency synthesizers not plagued by loop limitations. In a multiplier module, for example, the 

input frequency is multiplied by an integer coefficient to produce a higher output frequency. 

Although multiplication results in phase-noise degradation, a typical method of producing 

high-frequency synthesizers with wide output bandwidths is by multiplying a fixed-frequency or 

narrowband low-frequency synthesizer. In a mixer frequency-synthesizer structure, the output 

phase noise will be 3 dB/Hz higher than the highest phase noise of the two mixed modulus 

sources: 

 

Mixer techniques can also be used to create wideband synthesizers. The input frequency and LO 

frequency are added and subtracted, with highpass filtering removing spurious products.  

Many frequency synthesizers are based on the use of PLLs, where a frequency divider module 

divides the output frequency by integer 1, as shown in Fig. 1 and Eq. 2: 

 

A PLL synthesizer can generate several frequencies within the bandwidth of the VCO by 

constant frequency spacings from Freference as explained in ref. 5. A linear model of a PLL 

synthesizer is a closed-loop system with a number of different phasenoise sources as shown in 

Fig. 1
7
: 

 

Assuming the loop filter is first order: 

 

Substituting Eq. 4 into Eq. 3 creates: 
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While the VCO and loop filter are first order, the system is second order. 

Figure 2 shows an example of the multiplying technique, where output signals are required from 

7.7 to 8.2 GHz with phase noise of -84 dBc/Hz offset 10 kHz from the carrier. With a ×3 

multiplier, the characteristics calculation is as (7.68 – 8.20)/3 = 2.56 – 2.74 GHz with -94 

dBc/Hz phase noise required for the 2.56-to-2.74- GHz bandwidth: 

 

The step size of the primary synthesizer is 10 kHz, with the final multiplied step size expressed 

as: 

 

A PLL frequency synthesizer’s building blocks include a reference frequency source, loop filter, 

phase/frequency detector (PFD), and divide-by- N modules.
6
 The loop filter is the most critical 

module since it affects the inband phase noise (from the reference oscillator) and helps eliminate 

spurious and adjacent harmonic frequencies. The loop filter must also provide adequate control 

voltage for the VCO. Passive filters provide about 5 V, while active filters support from about 0 

to 22 VDC. In the block diagram (Fig. 1), divider N reduces the VCO’s frequency to FVCO/N. 

The PFD detects the difference between an input frequency and the frequency of the VCO (FVCO) 

divided by integer N (FVCO/N) and, based on the phase or frequency difference, generates a DC 

voltage to tune the VCO. 

In a PLL, the VCO is the dominant source of phase noise (Fig. 3): 

 

To minimize phase noise, the phase detector gain, KPFD, should be maximized to minimize the 

sensitivity of VCO gain, KVCO 
8,9

: 

 

 

Flicker noise expresses close-in noise
8
: 
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where 

F = noise value expression, 

K = Boltzmann’s constant, 

T = environment temperature, 

B = bandwidth (usually 1 Hz), 

Pavs = the loop output power, 

Fc = center frequency, 

fm = offset frequency, 

1/N = divider ratio, 

KPFD = phase detector transfer function, 

H(s) = loop filter transfer function, and 

KVCO = VCO transfer function represented in Eq. 7. 

Referring to Fig. 1, the transfer functions of the noise sources from reference oscillator to output 

is 

 

The noise source transfer function of each block responds to the equations above. Each has 

G(s)/[1 + G(s) H(s)] in common. This is called the in-band noise relation where ?c is the loop 

bandwidth, fc is the loop phase, and H(s) is the feedback loop gain, 1/N
10

 : 

 

Note that G(s) has a reverse relation with s or ?c as shown in Fig. 4 and Eq. 22: 
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To validate these assumptions on phase noise, the Advanced Design System (ADS) software 

from Agilent Technologies was used to simulate performance at 2.7 GHz (Fig. 5). For further 

validation, a frequency synthesizer for 2.50 to 3.0 GHz (Fig. 6) was designed using the 

ADISimPLL software from Analog Devices. The circuit has a model ADF4108 synthesizer 

integrated circuit (IC), a model OP484 opamp IC from Analog Devices, and model 

HMX-333-16D VCO IC from Z-Communications (). A model RMK-3-123+ multiplier from 

Mini-Circuits was used for the integer 3 multiplication. Simulation results show phase noise of 

-99 dBc/Hz offset 10 kHz from a 2.7-GHz carrier, which agrees with ADISimPLL simulation 

results in the table. Simulations show the first three spurious frequencies at -46, -67, and -80 

dBc, primarily from reference spurs. The step size and loop bandwidth relationship indicates the 

spur attenuation level. The spacing between the first three spurs is usually equal to the step size 

or one-half of the channel step size. A step size of 25 kHz and loop bandwidth of 15 kHz were 

chosen to optimize spurious levels. 
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